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Abstract

We investigate the fourth-order nonlinear Schrodinger equation modulated by parity-time-
symmetric extended Rosen-Morse potentials. Since the imaginary part of the potentials does not
vanish asymptotically, any slight fluctuations in the field can eventually cause the nonlinear modes to
become unstable. Here we obtain stable solitons by adding the constraints of coefficients, which make
the imaginary part of the potentials component vanish asymptotically. Furthermore, we get other
fundamental stable single-hump and double-hump solitons by numerical methods. Then we consider
excitations of the soliton via adiabatical change of system parameters. The results we obtained in

this work provide a way to search for stable localized modes in parity-time-symmetric extended
Rosen-Morse potentials with fourth-order dispersion.

1. Introduction

With the development of modern science and technology, the nonlinear characteristics of systems are
considered fundamental to the understanding of many natural phenomena in various fields, such as fluid
mechanics and nonlinear optics [1-5]. The nonlinear Schrédinger (NLE) equation

20 L OV )+ WY+ ol = o, (1)
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is a vital implement to describe nonlinear problems in physical systems and has been widely used in the study of
various nonlinear phenomena, such as nonlinear optics, fluid mechanics, Bose—Einstein condensates, quantum
optics, plasmas physics, finance, etc [6-11].

In fiber optics, the fourth-order dispersion effect of the NLS equation cannot be neglected when the pulse
width is less than 10fs [ 12]. When the frequency of the optical field is close to the resonant frequency of the
optical fiber material, it is necessary to introduce higher-order nonlinearity because the low-order nonlinear
effect is not sufficient to describe the physical mechanism of the system [13, 14]. In this paper, we investigate the
fourth-order generalized Schrodinger equation with quintic nonlinearities.

In 1998, Bender et al found that the non-Hermitian Hamiltonians, H = —92 + U (x) with complex-valued
potentials can also exhibit entirely real spectra, which extended the traditional quantum theory to complex phase
space [15]. This conclusion requires that non-Hermitian Hamiltonians are parity-time- (PT-) symmetric. That
is, the potential function satisfies U(x) = U*( — x) [16—18]. In optics, we can get the stable propagation of signal
when the propagation constant of the light is in real spectrum range, which requires the gain-and-loss
distributions in the medium to be precisely balanced to ensure the relation n(x) = n*( — x) [18, 19]. The
introduction of the PT -symmetry concept into optical systems led to the discovery of many stable solitons
[20-30], in which the PT -symmetric potential is realized by the complex refractive index n(x) = ng(x) + iny(x)
[31-33].
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Over the past few years, various PT -symmetric potentials have been introduced into the NLS equation
[34—43]. In particular, in NLS equations with complex PT -symmetric Scarf-1I potentials [44—47], periodic
potentials [48, 49], Gaussian potentials [50, 51], harmonic potentials [52—54], §-signum potentials [55, 56], the
existence of different nonlinear local modes is analytically and numerically investigated.

Asan important three parameter molecular potential field, the standard Rosen-Morse potential can
effectively describe the vibration of diatomic molecules [57]. What is more, Absolute transmission of the
nonlinear system can occur in the hyperbolic Rosen-Morse potential with suitable complexification [58—63].
However, there are fewer studies on nonlinear modes in complex PT -symmetric Rosen-Morse potential wells
[64-66]. The complex Rosen-Morse potential has the same real part and different imaginary part as the Scarf-11
potential. Since the imaginary part tends to a finite value rather than vanish asymptotically, the gain/loss is still
there in the system even though it is far from the location [67]. Therefore, any slight fluctuations in the field can
eventually cause the nonlinear modes to become unstable [64]. But we can set the imaginary part gradually
disappear to obtain stable nonlinear modes by constructing the extended Rosen-Morse potentials. In this case,
the complex potential can also be seen reduced to a generalized version of the PT-symmetric Scarf-II
potential [68].

In this paper, we investigate the propagation of nonlinear modes in a single PT -symmetric waveguide cell
characterized by the fourth-order generalized Schrodinger equation with quintic nonlinearities and extended
complex Rosen-Morse potentials. The present paper is built up as follows. In section 2, the linear stability of
solitons and stability of nonlinear modes in the NLS equation are analyzed. By adjusting the parameters of the
extended Rosen-Morse potentials, we can obtain stable propagation of nonlinear modes. In section 3, we get
other fundamental stable single-hump and double-hump solitons by numerical methods. Then we consider
excitations of the soliton via adiabatical change of system parameters. In section 4, the results will be
summarized.

2. Localized modes in NLS equation with PT-symmetric complex potentials

2.1. Mathematical model
Here, we investigate the propagation of optical wave in a medium with fourth-order dispersion and quintic
nonlinearities effects, which can be governed by the following generalized NLS equation with PT -symmetric
potentials [69, 70]:
2 4
20 00 GO () W1 + ol + Al = o, @
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where x and z are the transverse coordinate and scaled propagation distance, respectively, and ¢ (x, z)
corresponds to the slowly varying amplitude of the light field. S represents the effect of fourth-order dispersion,
V(x) describes the real refractive index profile, and W(x) is a gain-or-loss distribution. The PT -symmetric
potentials V(x) + iW(x) leads to the conditions V(x) = V( — x) and W(x) = — W( — x). In this case, o and yare
the parameters of cubic and quintic nonlinearities, respectively, and positive ones represent self-focusing
nonlinear media, while negative ones represent self-defocusing nonlinear media.
We concentrate on stationary solutions of equation (2) in the form

P(x, 2) = Pp(x)er, 3)
where 1 is the real propagation constant. The complex solution ¢(x) satisfies the following condition

2 4
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which can be solved using numerical methods for the given potentials V(x) + iW(x) and real propagation
constant .
We initiate our analysis by introducing the following PT -symmetric potentials

V(x) = Vp sech®(x) + V; sech*(x), (5q)
W (x) = W, tanh(x) + W, tanh3(x), (5b)

and the constants Vj, V', Wy, and W) represent the depths of the real and imaginary parts. For the case

V1 = W) =0, equation (5) simplifies to the standard Rosen-Morse potentials. These two functions are bounded
and V(x) — 0 while |W(x)| — |W, + W,|as |x| — oo . Moreover, the gain-and-loss distribution can always be
balanced in equation (2) since f t: W (x)dx = 0.

2
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Figure 1. (a) The unbroken or broken PT -symmetric phase generated by linear eigenvalue problem (7) with PT -symmetric
potentials (5). (b, ¢) Real and Imaginary part of the first two energy eigenvalues A with 3 = 0.535. The parameters are V, = 4.745,
V) = 3. The first two eigenvalues with the smallest real part correspond to the two lowest energy levels.

2.2.Linear eigenvalue problem
In the absence of the nonlinearity (o = v = 0), through the stationary transformation

P(x, 2) = p(x)e ™, (6)

equation (4) can be transformed to the eigenvalue problem:
LO(x) = A\®(x), (7a)
L=—02+ B0t — V(x) — iW(x), (7b)

where A and ®(x) are the eigenvalue and the localized eigenfunction, respectively. We numerically solve the
linear eigenvalue problem by the spectral method [71] and get the critical PT -symmetry breaking lines on the
(Wo, W1) space, and the domains of unbroken/broken linear PT -symmetric phases are above/below the

PT -symmetry breaking lines [see figure 1(a)]. It turns out that the unbroken domains become larger with the
increase of 3 or the decrease of Wy and W,. For instance, we choose W, = — 10 and —8 to illustrate the
spontaneous PT -symmetry breaking process, which stems from the collision of several lowest energy levels
determined by discrete eigenvalue spectra [see figures 1(b) and 1(c)]. The first two eigenvalues with the smallest
real part of the linear operator are the two lowest states corresponding to discrete spectra[15, 18,72, 73]. The
first two lowest energy levels begin to merge as W, increases, and the phase transition point is located at the
boundary between the unbroken and the broken regions. This is due to the breakup of symmetry is associated
with the increase of the imaginary part of the potential.

2.3. PT nonlinear mode and stability
In this section, we investigate the stationary solutions of equation (4) in the PT -symmetric potentials (5). We
have the analytical bright-soliton solution as [64]

¢(x) = A sech(x)e, (8)
where the amplitude soliton A, the phase wavenumber b, the propagation constant  are given by:
A =@46 - W/, (a)
b= (=24 203 + 0A2 + Vy)/128, (9b)
p=1-—pb* + 66b>—b>—p (9¢)

with Wy = 2b + 208b + 43b°, W, = — 243b, and the existing condition of the solution (243 — V;)y > 0 and
(=2 + 208+ 0A* + V)3 > 0 are required. Since | W(x)| — |W, + W;| as |x| — oo, we can make W, + W; = 0
so that the imaginary part of the potentials component vanishes asymptotically with the increase of |x| (i.e.,
Vo=—4—803— cAd.

For the nonlinear modes given in equation (8), the Poynting vector S = é(d)(bj — ¢%¢,) = A’b sech’(x).
Dueto A%b > 0, Sis positive everywhere, and the power flow in the PT cell is in one direction, i.e., from the gain
domain towards the loss domain. The power of the solutions is P = L 0; | (x) [>dx = 2A2%. It remains positive
and is conserved in the present condition of the solution.

Next, we investigate the linear stability of the nonlinear modes. We consider the perturbed solution ¥(x, z),
in the form

V(x, 2) = Px)eh + e[ f(x)e + g¥(x)e 7] el (10)
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Figure 2. Maximal imaginary part of the linearization eigenvalue ¢ in the (3, 7)-space (common logarithmic scale), under the
constraintof o = — 10, V; = 3and (a) Vo = — 4 — 83 — oA”and b = /(28 — 1)/23; (b) V, = 8 and the parameters on the
magenta dashed line satisfy Vo = — 4 — 83 — 0A>.
where € < 1. f(x) and g(x) are the perturbation eigenfunctions of the linearized eigenvalue problem. By
substituting equation (10) into equation (2) and linearizing with respect to €, we obtain the following linear
eigenvalue problem:
L, L X x
1o b Fe_ gl F@ | (an
—L, —L;|l&®) g§(x)
where
[i=082— B3t + V() +iWx) + 2000 + 381" — (12a)
Ly=0¢> + 2loPo> (120)

The imaginary part of 6 measures the growth rate of the perturbation instability. If | Im(6)| > 0, then the
solution 1(x, z) will grow exponentially with z, and it is unstable; otherwise, the solution is stable. In our
numerical simulation, we use the Fourier collocation method to discretize the associated differential operator as
amatrix to solve the eigenvalue problem [74]. To further verify the stability of the solitons, we numerically
investigate the stability by evolving them with 5% perturbations as the initial condition to simulate the random
white noise (i.e., ¥(x, 0) = p(x)(1 + &) and { represents 5% perturbations). In our numerical simulations, the
second-order and fourth-order spatial differential is carried out by using Fourier spectral collocation method
and the integration in time is carried out by using explicit fourth-order Runge-Kutta method [74].

Asaresult, under the constraint of 0 = — 10, V; = 3, we consider the cases of Vy = — 4 — 85 — oA? (ie.,
Wo + W; =0) and V,, = 8, respectively. Then we get the stable (blue) and unstable (red) domains of nonlinear
localized modes [see figures 2]. They are determined by the maximum absolute value of imaginary parts of the
linearized eigenvalue 6 in equation (11)in (3, v) space. If Vo = — 4 — 83 — oA issatisfied, b = /(28 — 1)/203
and some parameters make the nonlinear mode stable [see figure 2(a)]. We also can find that for a given V;,, when
the parameters satisfy —4 — 85 — oA* = V,, the nonlinear mode tends to be stable [see figure 2(b)].

In particular, for the fixed parameters 3 = 0.535, 0 = — 10,y = 5.8, V; = 3, figures 3(a)—(d) display the
stable soliton for Vy = — 4 — 83 — A” while figures 3(e)—(h) display the unstable soliton for Vi, = 8; for the
fixed parameters 0 = — 10,7y =4.68, Vo= — 4 — 83 — oA% V=3, figures 4(a)—(d) display the stable soliton
for 8 = 0.636 while figures 4(e)—(h) display the unstable soliton for 3 = 0.638.

To sum up, when the imaginary part of the Rosen-Morse potentials well vanishes asymptotically, the soliton
may be stable; otherwise, the soliton is unstable. Since the imaginary part does not vanishes asymptotically, the
gain/loss remains in the system even far from the place of location. Therefore, any small fluctuations of the field
are amplified/absorbed and lead to its instability eventually [64]. We can obtain stable solitons by the constraints
of coefficients.
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Figure 3. (a), () The soliton solutions. (b), (f) Real and imaginary parts of PT -symmetric potentials. (c), (g) Linear stability
eigenvalues. (d), (h) Stable or unstable propagations of nonlinear modes. The parameters are chosen as: 3 = 0.535,0 = — 10,y = 5.8,
V, = 3,and (a)~(d) Vo = — 4 — 83 — 0A% (e=h) V, = 8.
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Figure 4. (a), () The soliton solutions. (b), (f) Real and imaginary parts of PT -symmetric potentials. (c), (g) Linear stability
eigenvalues. (d, h) Stable or unstable propagations of nonlinear modes. The parameters are chosen as: 0 = — 10,y = 4.68,
Vo= —4 — 88 — 0A% V; = 3,and (a-d) 3 = 0.636; (e)—(h) 3 = 0.638.

3. Families and adiabatic excitations of nonlinear modes

3.1. Families of nonlinear modes

The above results have been obtained with the propagation constant p = 1 — Gb* + 68b* — b* — 3,and itis
difficult to find other solutions through analytical methods. However, we can get other fundamental solitons by
numerical methods. When the parameters are chosen as 3 = 0.535,0 = — 10,y= 5.8, V, = 4.745,V, = 3,

Wo = 3.284, W; = — 3.284, we carry out the modified squared-operator method [74] and get families of stable
nonlinear modes, including single-hump and double-hump solitons (see figure 5(a)). For the same y, we find
another solution besides the analytic solution. We also use numerical evolution with 5% perturbations to verify
the stability of the nonlinear modes. As shown in figures 6(a)—(d), we choose the solution (i.e., point Bin figure
5(a)) with the same i as the previous figure 3(a) (i.e., point A in figure 5(a)) and analyze its stability. From it, we
can see that the solitons can propagate stably. Figures 6(e)—(h) show the double-hump soliton, corresponding to
point Cin figure 5(a), and we can see that the solution is in a critical steady state through the linear stability
analysis and numerical evolution.
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Figure 5. The power P of the numerical solitons versus the propagation constant yi. The parameters are chosen as: (a) 3 = 0.535,
o=—10,7v=538,V,=4.745,V, =3, W, = 3.284, W, = — 3.284; (b) 6 = 0.6,0 = — 5,y =1, V; = 9.503, V; = 1, W, = 5.879,
W, = — 5.879. Points A and B correspond to the same yi. The soliton corresponding to point A is shown in figure 3(a).
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Figure 6. (a), (¢) The soliton solutions. (b), (f) Real and imaginary parts of PT -symmetric potentials. (c), (g) Linear stability
eigenvalues. (d), (h) Stable or unstable propagations of nonlinear modes. The parameters are chosen as: 5 = 0.535,0 = — 10,y = 5.8,
Vo =4.745, V, = 3, W, = 3.284, W, = — 3.284. They correspond to points Band Cin figure 5(a), respectively.

Next, we change the parametersto 5 =0.6,0 = — 5,y=1, V;, =9.503, V|, = 1, W, = 5.879, W, = — 5.879

and get other families of nonlinear modes [see figure 5(b)]. Figures 7(a)—(d) display the stable double-hump

soliton with y = 0.2 while figures 7(e)—(h) display the unstable solution with y = 0.7.

3.2. Adiabatic excitations for the nonlinear modes
In this section, we consider excitations of the above-mentioned soliton in figure 3(a) via adiabatical change of
system parameters. We change the parameters in equation (2) and PT -symmetric potentials (5) as the functions
of propagation distance z. To modulate the system parameters smoothly, we consider the following ‘switch-on’

function:
G(ini)’ t = 0,
(end) __ _(ini) t -
ey ={"——"° |1+ sin(L - 1) + €m0 < ¢ < 500, (13)
500 2
elend), 500 < t < 1500,
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potential

Figure 8. Adiabatic excitation of nonlinear mode and its evolution. The initial values of the excited state are the same as in figure 3(a):
f=05350=—10,7=>5.8, Vy = 4.745, V; = 3, W, = 3.284, W; = — 3.284 and (a, b) W) = w — g, wend — wind 4 g;
(0) Fr V=" 1 0.5.

where ¢, ¢(end)

stage (0 < £ < 500), system parameters change slowly from €™ to €
(ini)
€

respectively represent the real initial-state and final-state parameters. During the excitation
end) "and the initial state corresponding to
will be adiabatically driven to the new state corresponding to e™®; during the propagation stage
(500 < t < 1500), system parameters are maintained at " and the excited nonlinear mode will propagate in
the final system [43, 75, 76]. To correspond to the content of the previous study, the initial values of the excited
state are the same as in figure 3(a): 5= 0.535,0 = — 10,y = 5.8, Vy = 4.745, V|, = 3, W, = 3.284, W, = — 3.284.
We firstly change Wy and W, by setting W™ = 3.284, W& = —4.716, W) = —3.284, w9 —
4.716, while keeping other parameters unchanged. Figure 8(a) show the stable excitation and evolution of the
nonlinear mode. The initial and final states of the imaginary part of the complex potential well (i.e., gain-or-loss
distribution) are shown in figure 8(b). We can find that the soliton can still propagate stably after the gain-or-loss
distribution changes without other parameters being changed. Then we investigate the excitation of mode from
asystem of weak fourth-order dispersion to a strong one. In the parameters in the figure 2(a), as the effect of
fourth-order dispersion increases, the soliton becomes unstable. In order to obtain stable soliton with strong
fourth-order dispersion effects by adiabatic excitation, we change 3by setting 37=0.535, 3"¥=1.035 while
keeping other parameters unchanged. Finally we get stable soliton in figure 8(c).

4. Conclusion

In conclusion, we investigate the stability of nonlinear modes in the fourth-order nonlinear Schrédinger
equation with quintic nonlinearities and PT -symmetric extended Rosen-Morse potentials analytically and
numerically. For the PT-symmetric extended Rosen-Morse potentials, the parameter space can be divided into

7
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different domains corresponding to unbroken and broken PT -symmetry. Since the imaginary part of the
potentials does not vanish asymptotically, any slight fluctuations in the field are amplified /absorbed and can
eventually cause the nonlinear modes to become unstable. Here we obtain stable solitons by adding the
constraints of coefficients, which make the imaginary part of the potentials component vanish asymptotically.
And we investigate the linear stability of the nonlinear modes and validate the results by evolving them with 5%
perturbations as an initial condition. We also investigate the Poynting vector and the power of nonlinear modes,
which are positive everywhere. And in the PT cell, the power flow is in one direction, i.e., from the gain domain
toward the loss domain. Furthermore, we can get other fundamental stable single-hump and double-hump
solitons by numerical methods. Finally, we consider excitations of the soliton via adiabatical change of system
parameters.

The results we obtained in this work provide a way to search for the stable localized modes of the nonlinear
Schrédinger equation with the PT-symmetric extended Rosen-Morse potentials with fourth-order diffraction.
These findings of nonlinear modes can be potentially applied to hydrodynamics, optics, and matter waves in
Bose—Einstein condensates.
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