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Abstract
We investigate the fourth-order nonlinear Schrödinger equationmodulated by parity-time-
symmetric extended Rosen-Morse potentials. Since the imaginary part of the potentials does not
vanish asymptotically, any slight fluctuations in the field can eventually cause the nonlinearmodes to
become unstable.Here we obtain stable solitons by adding the constraints of coefficients, whichmake
the imaginary part of the potentials component vanish asymptotically. Furthermore, we get other
fundamental stable single-hump and double-hump solitons by numericalmethods. Thenwe consider
excitations of the soliton via adiabatical change of systemparameters. The results we obtained in
this work provide away to search for stable localizedmodes in parity-time-symmetric extended
Rosen-Morse potentials with fourth-order dispersion.

1. Introduction

With the development ofmodern science and technology, the nonlinear characteristics of systems are
considered fundamental to the understanding ofmany natural phenomena in various fields, such asfluid
mechanics and nonlinear optics [1–5]. The nonlinear Schrödinger (NLE) equation
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is a vital implement to describe nonlinear problems in physical systems and has beenwidely used in the study of
various nonlinear phenomena, such as nonlinear optics, fluidmechanics, Bose–Einstein condensates, quantum
optics, plasmas physics, finance, etc [6–11].

Infiber optics, the fourth-order dispersion effect of theNLS equation cannot be neglectedwhen the pulse
width is less than 10fs [12].When the frequency of the opticalfield is close to the resonant frequency of the
opticalfibermaterial, it is necessary to introduce higher-order nonlinearity because the low-order nonlinear
effect is not sufficient to describe the physicalmechanismof the system [13, 14]. In this paper, we investigate the
fourth-order generalized Schrödinger equationwith quintic nonlinearities.

In 1998, Bender et al found that the non-HermitianHamiltonians, ( )U xx
2= -¶ + with complex-valued

potentials can also exhibit entirely real spectra, which extended the traditional quantum theory to complex phase
space [15]. This conclusion requires that non-HermitianHamiltonians are parity-time- ( T -) symmetric. That
is, the potential function satisfiesU(x)=U*(− x) [16–18]. In optics, we can get the stable propagation of signal
when the propagation constant of the light is in real spectrum range, which requires the gain-and-loss
distributions in themedium to be precisely balanced to ensure the relation n(x)= n*(− x) [18, 19]. The
introduction of the T -symmetry concept into optical systems led to the discovery ofmany stable solitons
[20–30], inwhich the T -symmetric potential is realized by the complex refractive index n(x)= nR(x)+ inI(x)
[31–33].
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Over the past few years, various T -symmetric potentials have been introduced into theNLS equation
[34–43]. In particular, inNLS equations with complex T -symmetric Scarf-II potentials [44–47], periodic
potentials [48, 49], Gaussian potentials [50, 51], harmonic potentials [52–54], δ-signumpotentials [55, 56], the
existence of different nonlinear localmodes is analytically and numerically investigated.

As an important three parametermolecular potential field, the standard Rosen-Morse potential can
effectively describe the vibration of diatomicmolecules [57].What ismore, Absolute transmission of the
nonlinear system can occur in the hyperbolic Rosen-Morse potential with suitable complexification [58–63].
However, there are fewer studies on nonlinearmodes in complex T -symmetric Rosen-Morse potential wells
[64–66]. The complex Rosen-Morse potential has the same real part and different imaginary part as the Scarf-II
potential. Since the imaginary part tends to a finite value rather than vanish asymptotically, the gain/loss is still
there in the system even though it is far from the location [67]. Therefore, any slightfluctuations in the field can
eventually cause the nonlinearmodes to become unstable [64]. But we can set the imaginary part gradually
disappear to obtain stable nonlinearmodes by constructing the extendedRosen-Morse potentials. In this case,
the complex potential can also be seen reduced to a generalized version of the T -symmetric Scarf-II
potential [68].

In this paper, we investigate the propagation of nonlinearmodes in a single T -symmetric waveguide cell
characterized by the fourth-order generalized Schrödinger equationwith quintic nonlinearities and extended
complex Rosen-Morse potentials. The present paper is built up as follows. In section 2, the linear stability of
solitons and stability of nonlinearmodes in theNLS equation are analyzed. By adjusting the parameters of the
extendedRosen-Morse potentials, we can obtain stable propagation of nonlinearmodes. In section 3, we get
other fundamental stable single-hump and double-hump solitons by numericalmethods. Thenwe consider
excitations of the soliton via adiabatical change of systemparameters. In section 4, the results will be
summarized.

2. Localizedmodes inNLS equationwith T -symmetric complex potentials

2.1.Mathematicalmodel
Here, we investigate the propagation of optical wave in amediumwith fourth-order dispersion and quintic
nonlinearities effects, which can be governed by the following generalizedNLS equationwith T -symmetric
potentials [69, 70]:
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where x and z are the transverse coordinate and scaled propagation distance, respectively, andψ(x, z)
corresponds to the slowly varying amplitude of the lightfield.β represents the effect of fourth-order dispersion,
V(x)describes the real refractive index profile, andW(x) is a gain-or-loss distribution. The T -symmetric
potentialsV(x)+ iW(x) leads to the conditionsV(x)= V(− x) andW(x)=−W(− x). In this case,σ and γ are
the parameters of cubic and quintic nonlinearities, respectively, and positive ones represent self-focusing
nonlinearmedia, while negative ones represent self-defocusing nonlinearmedia.

We concentrate on stationary solutions of equation (2) in the form

( ) ( ) ( )x z x, e , 3i zy f= m

whereμ is the real propagation constant. The complex solutionf(x) satisfies the following condition
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which can be solved using numericalmethods for the given potentialsV(x)+ iW(x) and real propagation
constantμ.

We initiate our analysis by introducing the following T -symmetric potentials
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and the constantsV0,V1,W0, andW1 represent the depths of the real and imaginary parts. For the case
V1=W1= 0, equation (5) simplifies to the standard Rosen-Morse potentials. These two functions are bounded
andV(x)→ 0while |W(x)|→ |W0+W1| as |x|→∞ .Moreover, the gain-and-loss distribution can always be

balanced in equation (2) since ( )W x dx 0ò =
-¥

+¥
.
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2.2. Linear eigenvalue problem
In the absence of the nonlinearity (σ= γ= 0), through the stationary transformation

( ) ( ) ( )x z x, e , 6i zy f= l-

equation (4) can be transformed to the eigenvalue problem:
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whereλ andΦ(x) are the eigenvalue and the localized eigenfunction, respectively.We numerically solve the
linear eigenvalue problemby the spectralmethod [71] and get the critical T -symmetry breaking lines on the
(W0,W1) space, and the domains of unbroken/broken linear T -symmetric phases are above/below the

T -symmetry breaking lines [see figure 1(a)]. It turns out that the unbroken domains become larger with the
increase ofβ or the decrease ofW0 andW1. For instance, we chooseW1=− 10 and−8 to illustrate the
spontaneous T -symmetry breaking process, which stems from the collision of several lowest energy levels
determined by discrete eigenvalue spectra [see figures 1(b) and 1(c)]. Thefirst two eigenvalues with the smallest
real part of the linear operator are the two lowest states corresponding to discrete spectra [15, 18, 72, 73]. The
first two lowest energy levels begin tomerge asW0 increases, and the phase transition point is located at the
boundary between the unbroken and the broken regions. This is due to the breakup of symmetry is associated
with the increase of the imaginary part of the potential.

2.3. T nonlinearmode and stability
In this section, we investigate the stationary solutions of equation (4) in the T -symmetric potentials (5).We
have the analytical bright-soliton solution as [64]

( ) ( ) ( )x A xsech e , 8ibxf =

where the amplitude solitonA, the phase wavenumber b, the propagation constantμ are given by:
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withW0= 2b+ 20βb+ 4βb3,W1=− 24βb, and the existing condition of the solution (24β− V1)γ> 0 and
(−2+ 20β+ σA2+ V0)β> 0 are required. Since |W(x)|→ |W0+W1| as |x|→∞ , we canmakeW0+W1= 0
so that the imaginary part of the potentials component vanishes asymptotically with the increase of |x| (i.e.,
V0=− 4− 8β− σA2).

For the nonlinearmodes given in equation (8), the Poynting vector * *( ) ( )S A b xsechi
x x2

2 2ff f f= - = .

Due toA2b> 0, S is positive everywhere, and the powerflow in the T cell is in one direction, i.e., from the gain
domain towards the loss domain. The power of the solutions is ∣ ( )∣P x dx A22 2ò f= =

-¥

¥
. It remains positive

and is conserved in the present condition of the solution.
Next, we investigate the linear stability of the nonlinearmodes.We consider the perturbed solutionψ(x, z),

in the form

* *( ) ( ) [ ( ) ( ) ] ( )x z x f x g x, e e e e 10i z i z i z i zy f= + +m d d m-

Figure 1. (a)The unbroken or broken T -symmetric phase generated by linear eigenvalue problem (7)with T -symmetric
potentials (5). (b, c)Real and Imaginary part of thefirst two energy eigenvaluesλwithβ = 0.535. The parameters areV0 = 4.745,
V1 = 3. The first two eigenvalues with the smallest real part correspond to the two lowest energy levels.
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where ò= 1. f (x) and g(x) are the perturbation eigenfunctions of the linearized eigenvalue problem. By
substituting equation (10) into equation (2) and linearizingwith respect to ò, we obtain the following linear
eigenvalue problem:
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The imaginary part of δmeasures the growth rate of the perturbation instability. If ∣ ( )∣Im 0d > , then the
solutionψ(x, z)will grow exponentially with z, and it is unstable; otherwise, the solution is stable. In our
numerical simulation, we use the Fourier collocationmethod to discretize the associated differential operator as
amatrix to solve the eigenvalue problem [74]. To further verify the stability of the solitons, we numerically
investigate the stability by evolving themwith 5%perturbations as the initial condition to simulate the random
white noise (i.e.,ψ(x, 0)= f(x)(1+ ξ) and ξ represents 5%perturbations). In our numerical simulations, the
second-order and fourth-order spatial differential is carried out by using Fourier spectral collocationmethod
and the integration in time is carried out by using explicit fourth-order Runge-Kuttamethod [74].

As a result, under the constraint ofσ=− 10,V1= 3, we consider the cases ofV0=− 4− 8β− σA2 (i.e.,
W0+W1= 0) andV0= 8, respectively. Thenwe get the stable (blue) and unstable (red) domains of nonlinear
localizedmodes [see figures 2]. They are determined by themaximumabsolute value of imaginary parts of the
linearized eigenvalue δ in equation (11) in (β, γ) space. IfV0=− 4− 8β− σA2 is satisfied, ( )b 2 1 2b b= -
and someparametersmake the nonlinearmode stable [see figure 2(a)].We also can find that for a givenV0, when
the parameters satisfy−4− 8β− σA2= V0, the nonlinearmode tends to be stable [see figure 2(b)].

In particular, for thefixed parametersβ= 0.535,σ=− 10, γ= 5.8,V1= 3, figures 3(a)–(d) display the
stable soliton forV0=− 4− 8β− σA2 whilefigures 3(e)–(h)display the unstable soliton forV0= 8; for the
fixed parametersσ=− 10, γ= 4.68,V0=− 4− 8β− σA2,V1= 3,figures 4(a)–(d) display the stable soliton
forβ= 0.636whilefigures 4(e)–(h) display the unstable soliton forβ= 0.638.

To sumup,when the imaginary part of the Rosen-Morse potentials well vanishes asymptotically, the soliton
may be stable; otherwise, the soliton is unstable. Since the imaginary part does not vanishes asymptotically, the
gain/loss remains in the system even far from the place of location. Therefore, any smallfluctuations of the field
are amplified/absorbed and lead to its instability eventually [64].We can obtain stable solitons by the constraints
of coefficients.

Figure 2.Maximal imaginary part of the linearization eigenvalue δ in the (β, γ)-space (common logarithmic scale), under the
constraint ofσ = − 10,V1 = 3 and (a)V0 = − 4 − 8β − σA2 and ( )b 2 1 2 ;b b= - (b)V0 = 8 and the parameters on the
magenta dashed line satisfyV0 = − 4 − 8β − σA2.
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3. Families and adiabatic excitations of nonlinearmodes

3.1. Families of nonlinearmodes
The above results have been obtainedwith the propagation constantμ= 1− βb4+ 6βb2− b2− β, and it is
difficult tofind other solutions through analyticalmethods. However, we can get other fundamental solitons by
numericalmethods.When the parameters are chosen asβ= 0.535,σ=− 10, γ= 5.8,V0= 4.745,V1= 3,
W0= 3.284,W1=− 3.284, we carry out themodified squared-operatormethod [74] and get families of stable
nonlinearmodes, including single-hump and double-hump solitons (seefigure 5(a)). For the sameμ, wefind
another solution besides the analytic solution.We also use numerical evolutionwith 5%perturbations to verify
the stability of the nonlinearmodes. As shown in figures 6(a)–(d), we choose the solution (i.e., pointB infigure
5(a))with the sameμ as the previous figure 3(a) (i.e., pointA infigure 5(a)) and analyze its stability. From it, we
can see that the solitons can propagate stably. Figures 6(e)–(h) show the double-hump soliton, corresponding to
pointC infigure 5(a), andwe can see that the solution is in a critical steady state through the linear stability
analysis and numerical evolution.

Figure 3. (a), (e)The soliton solutions. (b), (f)Real and imaginary parts of T -symmetric potentials. (c), (g) Linear stability
eigenvalues. (d), (h) Stable or unstable propagations of nonlinearmodes. The parameters are chosen as:β = 0.535,σ = − 10, γ = 5.8,
V1 = 3, and (a)–(d)V0 = − 4 − 8β − σA2; (e–h)V0 = 8.

Figure 4. (a), (e)The soliton solutions. (b), (f)Real and imaginary parts of T -symmetric potentials. (c), (g) Linear stability
eigenvalues. (d, h) Stable or unstable propagations of nonlinearmodes. The parameters are chosen as:σ = − 10, γ = 4.68,
V0 = − 4 − 8β − σA2,V1 = 3, and (a–d)β = 0.636; (e)–(h)β = 0.638.
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Next, we change the parameters toβ= 0.6,σ=− 5, γ= 1,V0= 9.503,V1= 1,W0= 5.879,W1=− 5.879
and get other families of nonlinearmodes [see figure 5(b)]. Figures 7(a)–(d) display the stable double-hump
solitonwithμ= 0.2while figures 7(e)–(h) display the unstable solutionwithμ= 0.7.

3.2. Adiabatic excitations for the nonlinearmodes
In this section, we consider excitations of the above-mentioned soliton infigure 3(a) via adiabatical change of
systemparameters.We change the parameters in equation (2) and T -symmetric potentials (5) as the functions
of propagation distance z. Tomodulate the systemparameters smoothly, we consider the following ‘switch-on’
function:
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Figure 5.The power P of the numerical solitons versus the propagation constantμ. The parameters are chosen as: (a)β = 0.535,
σ = − 10, γ = 5.8,V0 = 4.745,V1 = 3,W0 = 3.284,W1 = − 3.284; (b)β = 0.6,σ = − 5, γ = 1,V0 = 9.503,V1 = 1,W0 = 5.879,
W1 = − 5.879. PointsA andB correspond to the sameμ. The soliton corresponding to pointA is shown infigure 3(a).

Figure 6. (a), (e)The soliton solutions. (b), (f)Real and imaginary parts of T -symmetric potentials. (c), (g) Linear stability
eigenvalues. (d), (h) Stable or unstable propagations of nonlinearmodes. The parameters are chosen as:β = 0.535,σ = − 10, γ = 5.8,
V0 = 4.745,V1 = 3,W0 = 3.284,W1 = − 3.284. They correspond to pointsB andC infigure 5(a), respectively.
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where ò(ini), ò(end) respectively represent the real initial-state and final-state parameters. During the excitation
stage (0< t< 500), systemparameters change slowly from ò(ini) to ò(end), and the initial state corresponding to
ò(ini)will be adiabatically driven to the new state corresponding to ò(end); during the propagation stage
(500� t� 1500), systemparameters aremaintained at ò(end), and the excited nonlinearmodewill propagate in
thefinal system [43, 75, 76]. To correspond to the content of the previous study, the initial values of the excited
state are the same as infigure 3(a):β= 0.535,σ=− 10, γ= 5.8,V0= 4.745,V1= 3,W0= 3.284,W1=− 3.284.

Wefirstly changeW0 andW1 by setting
( )W 3.2840
ini = , ( )W 4.7160

end = - , ( )W 3.2841
ini = - , ( )W1

end =
4.716, while keeping other parameters unchanged. Figure 8(a) show the stable excitation and evolution of the
nonlinearmode. The initial and final states of the imaginary part of the complex potential well (i.e., gain-or-loss
distribution) are shown infigure 8(b).We can find that the soliton can still propagate stably after the gain-or-loss
distribution changes without other parameters being changed. Thenwe investigate the excitation ofmode from
a systemofweak fourth-order dispersion to a strong one. In the parameters in the figure 2(a), as the effect of
fourth-order dispersion increases, the soliton becomes unstable. In order to obtain stable solitonwith strong
fourth-order dispersion effects by adiabatic excitation, we changeβ by settingβ(ini)=0.535,β(end)=1.035while
keeping other parameters unchanged. Finally we get stable soliton infigure 8(c).

4. Conclusion

In conclusion, we investigate the stability of nonlinearmodes in the fourth-order nonlinear Schrödinger
equationwith quintic nonlinearities and T -symmetric extended Rosen-Morse potentials analytically and
numerically. For the T -symmetric extendedRosen-Morse potentials, the parameter space can be divided into

Figure 7. (a), (e)The soliton solutions. (b), (f)Real and imaginary parts of T -symmetric potentials. (c), (g) Linear stability
eigenvalues. (d), (h) Stable or unstable propagations of nonlinearmodes. The parameters are chosen as:β = 0.6,σ = − 5, γ = 1,
V0 = 9.503,V1 = 1,W0 = 5.879,W1 = − 5.879. They correspond to pointsD andE infigure 5(b), respectively.

Figure 8.Adiabatic excitation of nonlinearmode and its evolution. The initial values of the excited state are the same as infigure 3(a):
β = 0.535,σ = − 10, γ = 5.8,V0 = 4.745,V1 = 3,W0 = 3.284,W1 = − 3.284 and (a, b) ( ) ( )W W 80

end
0

ini= - , ( ) ( )W W 8;1
end

1
ini= +

(c)β(end)=β(ini) + 0.5.
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different domains corresponding to unbroken and broken T -symmetry. Since the imaginary part of the
potentials does not vanish asymptotically, any slight fluctuations in the field are amplified/absorbed and can
eventually cause the nonlinearmodes to become unstable. Herewe obtain stable solitons by adding the
constraints of coefficients, whichmake the imaginary part of the potentials component vanish asymptotically.
Andwe investigate the linear stability of the nonlinearmodes and validate the results by evolving themwith 5%
perturbations as an initial condition.We also investigate the Poynting vector and the power of nonlinearmodes,
which are positive everywhere. And in the T cell, the power flow is in one direction, i.e., from the gain domain
toward the loss domain. Furthermore, we can get other fundamental stable single-hump and double-hump
solitons by numericalmethods. Finally, we consider excitations of the soliton via adiabatical change of system
parameters.

The results we obtained in this work provide away to search for the stable localizedmodes of the nonlinear
Schrödinger equationwith the T -symmetric extendedRosen-Morse potentials with fourth-order diffraction.
Thesefindings of nonlinearmodes can be potentially applied to hydrodynamics, optics, andmatter waves in
Bose–Einstein condensates.
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